Density Functional and Dislocation Theory of Graphite Related to Nuclear Materials

نویسنده

  • Glen Sheehan
چکیده

This thesis concerns the physicochemical understanding of radiation damage in graphite. It is structured in two parts, the first being a foundation of elastic and bonding properties in graphite and its intercalation compound with Bromine. The second builds on this with dislocation theory to analyse dimensional change and stored elastic energy. Part 1: Density functional theory (DFT) in the local density approximation (LDA) has been used to study the elastic properties of hexagonal graphite and of Bromine intercalated graphite. The second and third order elastic constants of graphite have been calculated ab initio. The internal strain has been considered and the results include partial and total elastic constant results. The nature of the interlayer binding energy has been studied using DFT with LDA. The London dispersion forces have been applied to the DFT results using a simple Lennard-Jones type model. The results of this study are in good agreement with other theoretical and experimental studies. The zero point energy has also been calculated and its effects applied to the interlayer energy and the related elastic constant C33 . This constant has also been calculated for stage-1 and stage-2 Bromine-intercalated graphite in order to aid interpretation of intercalation experiments which try to emulate with Br intercalation, the c-axis dimensional change that occurs from radiation damage. Part 2: A two dimensional dislocation model has been written based on both basal and prismatic dislocations. The model elucidates the stress fields arising from irradiation damage in graphite in either the standard damage model based on prismatic loops or the newly proposed model based on basal dislocations. It illustrates the different physical processes underlying dimensional change and should enable it to be quantified. The energy of the stress fields is calculated and found to be comparable to stored energies measured for graphite irradiated below 250C.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study of thermodynamic parameters of (TATB) and its fullerene derivatives with different number of Carbon (C20, C24, C60), in different conditions of temperature, using density functional theory

In this research 1, 3, 5-triamino-2, 4, 6-trinitrobenzene (TATB) were attached with different nano structures of fullerene with 20, 24 and 60 carbons producing nano structures with diverse molecular weights. Then by the use of density functional theory methods, thermodynamic parameters of TATB with foregoing nanostructures, in wide of temperature, between 300-400 ºK were computed. To this purpo...

متن کامل

Study of thermodynamic parameters of (TATB) and its fullerene derivatives with different number of Carbon (C20, C24, C60), in different conditions of temperature, using density functional theory

In this research 1, 3, 5-triamino-2, 4, 6-trinitrobenzene (TATB) were attached with different nano structures of fullerene with 20, 24 and 60 carbons producing nano structures with diverse molecular weights. Then by the use of density functional theory methods, thermodynamic parameters of TATB with foregoing nanostructures, in wide of temperature, between 300-400 ºK were computed. To this purpo...

متن کامل

Calculation of Thermodynamic Parameters of [2.4.6] Three Nitro Toluene (TNT) with Nanostructures of Fullerene and Boron Nitride Nano-cages over Different Temperatures, Using Density Functional Theory

In this study explosive substance [2.4.6] three Nitro Toluene (TNT) was attached with nanostructures of fullerene (C24) and boron nitride nano-cages (B12N12). After that using B3LYP (Becke, three-parameter, Lee-Yang-Parr), a method from density functional theory (DFT), thermodynamic parameters of TNT with foregoing nanostructures, in different conditions of temperature, were computed. To this a...

متن کامل

Density functional theory study the effects of oxygen-containing functional groups on oxygen molecules and oxygen atoms adsorbed on carbonaceous materials

Density functional theory was used to study the effects of different types of oxygen-containing functional groups on the adsorption of oxygen molecules and single active oxygen atoms on carbonaceous materials. During gasification or combustion reactions of carbonaceous materials, oxygen-containing functional groups such as hydroxyl(-OH), carbonyl(-CO), quinone(-O), and carboxyl(-COOH) are often...

متن کامل

Investigation of Nickle nanoclusters properties by density functional theory

Clusters play important role for understanding and transferring microscopic to macroscopic properties.Geometric and electron properties of Small nickel clusters up to the tetramer has been investigated by Density Functional Theory (DFT). Raising the number of nickel clusters atoms were indicated decreasing the average equilibrium (Ni-Ni) distance of atoms and also the binding energy of per atom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013